Search

11.6a — Calling inherited functions and overriding behavior

By default, derived classes inherit all of the behaviors defined in a base class. In this lesson, we’ll examine in more detail how member functions are selected, as well as how we can leverage this to change behaviors in a derived class.

Calling a base class function

When a member function is called with a . . . → Read More: 11.6a — Calling inherited functions and overriding behavior

11.6b — Hiding inherited functionality

Changing an inherited member’s access level

C++ gives us the ability to change an inherited member’s access specifier in the derived class. This is done by using a using declaration to identify the (scoped) base class member that is having its access changed in the derived class, under the new access specifier.

For example, consider . . . → Read More: 11.6b — Hiding inherited functionality

6.11a — References and const

Reference to const value

Just like it’s possible to declare a pointer to a const value, it’s also possible to declare a reference to a const value. This is done by declaring a reference using the const keyword.

References to const values are often called “const references” for short.

Initializing references to const values

. . . → Read More: 6.11a — References and const

7.12a — Assert and static_assert

Using a conditional statement to detect a violated assumption, along with printing an error message and terminating the program, is such a common response to problems that C++ provides a shortcut method for doing this. This shortcut is called an assert.

An assert statement is a preprocessor macro that evaluates a conditional expression at runtime. . . . → Read More: 7.12a — Assert and static_assert

15.x — Chapter 15 comprehensive review

A smart pointer class is a composition class that is designed to manage dynamically allocated memory, and ensure that memory gets deleted when the smart pointer object goes out of scope.

Copy semantics allow our classes to be copied. This is done primarily via the copy constructor and copy assignment operator.

Move semantics mean a . . . → Read More: 15.x — Chapter 15 comprehensive review

15.7 — Circular dependency issues with std::shared_ptr, and std::weak_ptr

In the previous lesson, we saw how std::shared_ptr allowed us to have multiple smart pointers co-owning the same resource. However, in certain cases, this can become problematic. Consider the following case, where the shared pointers in two separate objects each point at the other object:

In the above example, we dynamically allocate two Persons, . . . → Read More: 15.7 — Circular dependency issues with std::shared_ptr, and std::weak_ptr

15.6 — std::shared_ptr

Unlike std::unique_ptr, which is designed to singly own and manage a resource, std::shared_ptr is meant to solve the case where you need multiple smart pointers co-owning a resource.

This means that it is fine to have multiple std::shared_ptr pointing to the same resource. Internally, std::shared_ptr keeps track of how many std::shared_ptr are sharing the resource. . . . → Read More: 15.6 — std::shared_ptr

15.5 — std::unique_ptr

At the beginning of the chapter, we discussed how use of pointers can lead to bugs and memory leaks in some situations. For example, this can happen when a function early returns, or throws an exception, and the pointer is not properly deleted.

Now that we’ve covered the fundamentals of move semantics, we can . . . → Read More: 15.5 — std::unique_ptr

10.7 — std::initializer_list

Consider a fixed array of integers in C++:

If we want to initialize this array with values, we can do so directly via the initializer list syntax:

This prints:

5 4 3 2 1

This also works for dynamically allocated arrays:

In the previous lesson, we introduced the concept of container classes, . . . → Read More: 10.7 — std::initializer_list

15.4 — std::move

Once you start using move semantics more regularly, you’ll start to find cases where you want to invoke move semantics, but the objects you have to work with are l-values, not r-values. Consider the following swap function as an example:

Passed in two objects of type T (in this case, std::string), this function swaps . . . → Read More: 15.4 — std::move