18.1 — Pointers and references to the base class of derived objects

In the previous chapter, you learned all about how to use inheritance to derive new classes from existing classes. In this chapter, we are going to focus on one of the most important and powerful aspects of inheritance -- virtual functions.

But before we discuss what virtual functions are, let’s first set the table for why we need them.

In the chapter on construction of derived classes, you learned that when you create a derived class, it is composed of multiple parts: one part for each inherited class, and a part for itself.

For example, here’s a simple case:

When we create a Derived object, it contains a Base part (which is constructed first), and a Derived part (which is constructed second). Remember that inheritance implies an is-a relationship between two classes. Since a Derived is-a Base, it is appropriate that Derived contain a Base part.

Pointers, references, and derived classes

It should be fairly intuitive that we can set Derived pointers and references to Derived objects:

This produces the following output:

derived is a Derived and has value 5
rDerived is a Derived and has value 5
pDerived is a Derived and has value 5

However, since Derived has a Base part, a more interesting question is whether C++ will let us set a Base pointer or reference to a Derived object. It turns out, we can!

This produces the result:

derived is a Derived and has value 5
rBase is a Base and has value 5
pBase is a Base and has value 5

This result may not be quite what you were expecting at first!

It turns out that because rBase and pBase are a Base reference and pointer, they can only see members of Base (or any classes that Base inherited). So even though Derived::getName() shadows (hides) Base::getName() for Derived objects, the Base pointer/reference can not see Derived::getName(). Consequently, they call Base::getName(), which is why rBase and pBase report that they are a Base rather than a Derived.

Note that this also means it is not possible to call Derived::getValueDoubled() using rBase or pBase. They are unable to see anything in Derived.

Here’s another slightly more complex example that we’ll build on in the next lesson:

This produces the result:

cat is named Fred, and it says Meow
dog is named Garbo, and it says Woof
pAnimal is named Fred, and it says ???
pAnimal is named Garbo, and it says ???

We see the same issue here. Because pAnimal is an Animal pointer, it can only see the Animal portion of the class. Consequently, pAnimal->speak() calls Animal::speak() rather than the Dog::Speak() or Cat::speak() function.

Use for pointers and references to base classes

Now you might be saying, “The above examples seem kind of silly. Why would I set a pointer or reference to the base class of a derived object when I can just use the derived object?” It turns out that there are quite a few good reasons.

First, let’s say you wanted to write a function that printed an animal’s name and sound. Without using a pointer to a base class, you’d have to write it using overloaded functions, like this:

Not too difficult, but consider what would happen if we had 30 different animal types instead of 2. You’d have to write 30 almost identical functions! Plus, if you ever added a new type of animal, you’d have to write a new function for that one too. This is a huge waste of time considering the only real difference is the type of the parameter.

However, because Cat and Dog are derived from Animal, Cat and Dog have an Animal part. Therefore, it makes sense that we should be able to do something like this:

This would let us pass in any class derived from Animal, even ones that we created after we wrote the function! Instead of one function per derived class, we get one function that works with all classes derived from Animal!

The problem is, of course, that because rAnimal is an Animal reference, rAnimal.speak() will call Animal::speak() instead of the derived version of speak().

Second, let’s say you had 3 cats and 3 dogs that you wanted to keep in an array for easy access. Because arrays can only hold objects of one type, without a pointer or reference to a base class, you’d have to create a different array for each derived type, like this:

Now, consider what would happen if you had 30 different types of animals. You’d need 30 arrays, one for each type of animal!

However, because both Cat and Dog are derived from Animal, it makes sense that we should be able to do something like this:

While this compiles and executes, unfortunately the fact that each element of array “animals” is a pointer to an Animal means that animal->speak() will call Animal::speak() instead of the derived class version of speak() that we want. The output is

Fred says ???
Garbo says ???
Misty says ???
Pooky says ???
Truffle says ???
Zeke says ???

Although both of these techniques could save us a lot of time and energy, they have the same problem. The pointer or reference to the base class calls the base version of the function rather than the derived version. If only there was some way to make those base pointers call the derived version of a function instead of the base version…

Want to take a guess what virtual functions are for? :)

Quiz time

1) Our Animal/Cat/Dog example above doesn’t work like we want because a reference or pointer to an Animal can’t access the derived version of speak() needed to return the right value for the Cat or Dog. One way to work around this issue would be to make the data returned by the speak() function accessible as part of the Animal base class (much like the Animal’s name is accessible via member m_name).

Update the Animal, Cat, and Dog classes in the lesson above by adding a new member to Animal named m_speak. Initialize it appropriately. The following program should work properly:

Show Solution

2) Why is the above solution non-optimal?

Hint: Think about the future state of Cat and Dog where we want to differentiate Cats and Dogs in more ways.
Hint: Think about the ways in which having a member that needs to be set at initialization limits you.

Show Solution

18.2 -- Virtual functions and polymorphism
17.x -- Chapter 17 comprehensive quiz

128 comments to 18.1 — Pointers and references to the base class of derived objects

  • Sampo

    >The current solution is non-optimal because we need to add a member for each way we wanted to differentiate Cat and Dog. Over time, our Animal class could become quite large memory-wise, and complicated!

    Could someone further elaborate this point? Specifically to what we "need" to add the member to differentiate between Cats and Dogs? The base Animal class?

    • Tran Lam

      Consider an Animal that can MakeSound:

      Without virtual functions, you have to create a variable _sound to know how they sound. Let's say, you want to know what's their FavouriteFoodName, FavouriteColor, FavouriteActivites,... and not just for Dog and Cat, because you have just bought a new Parrot!
      With virtual functions, you can eliminate those variables, leaving the difference to be resolved by derived classes' functions.

  • michael oska


    first thank you for always answering all the questions.

    i m trying to use and learn smart pointer

    i try to use smart pointer instead

    the program work fine but when i check by Valgring it show that i have dangling pointer " it shows error but i think it s a dangling pointer"
    is there something i m missing here?

    thank you

    • nascardriver

      Smart pointers are used to describe ownership. When the smart pointer dies, it deletes the resource.
      `derived` is not dynamic, it has automatic storage duration and doesn't need to and cannot be deleted.
      Calling `delete` on a pointer to an object that was not created with `new` invokes undefined behavior.

      If you don't want to describe ownership, use regular pointers/references.

Leave a Comment

Put all code inside code tags: [code]your code here[/code]